Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
J Virol ; 97(12): e0100823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37962378

RESUMO

IMPORTANCE: The human gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus are etiologic agents of numerous B cell lymphomas. A hallmark of gammaherpesvirus infection is their ability to establish lifelong latency in B cells. However, the specific mechanisms that mediate chronic infection in B cells in vivo remain elusive. Cellular E3 ubiquitin ligases regulate numerous biological processes by catalyzing ubiquitylation and modifying protein location, function, or half-life. Many viruses hijack host ubiquitin ligases to evade antiviral host defense and promote viral fitness. Here, we used the murine gammaherpesvirus 68 in vivo system to demonstrate that the E3 ligase Cul4b is essential for this virus to establish latency in germinal center B cells. These findings highlight an essential role for this E3 ligase in promoting chronic gammaherpesvirus infection in vivo and suggest that targeted inhibition of E3 ligases may provide a novel and effective intervention strategy against gammaherpesvirus-associated diseases.


Assuntos
Linfócitos B , Gammaherpesvirinae , Infecções por Herpesviridae , Infecção Persistente , Animais , Camundongos , Linfócitos B/enzimologia , Linfócitos B/metabolismo , Linfócitos B/virologia , Proteínas Culina/metabolismo , Gammaherpesvirinae/fisiologia , Centro Germinativo/citologia , Centro Germinativo/virologia , Infecções por Herpesviridae/enzimologia , Infecções por Herpesviridae/virologia , Infecção Persistente/enzimologia , Infecção Persistente/virologia , Ubiquitinas/metabolismo , Latência Viral
2.
PLoS Pathog ; 19(10): e1011691, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847677

RESUMO

Even though gammaherpesvirus and parasitic infections are endemic in parts of the world, there is a lack of understanding about the outcome of coinfection. In humans, coinfections usually occur sequentially, with fluctuating order and timing in different hosts. However, experimental studies in mice generally do not address the variables of order and timing of coinfections. We sought to examine the variable of coinfection order in a system of gammaherpesvirus-helminth coinfection. Our previous work demonstrated that infection with the intestinal parasite, Heligmosomoides polygyrus, induced transient reactivation from latency of murine gammaherpesvirus-68 (MHV68). In this report, we reverse the order of coinfection, infecting with H. polygyrus first, followed by MHV68, and examined the effects of preexisting parasite infection on MHV68 acute and latent infection. We found that preexisting parasite infection increased the propensity of MHV68 to reactivate from latency. However, when we examined the mechanism for reactivation, we found that preexisting parasite infection increased the ability of MHV68 to reactivate in a vitamin A dependent manner, a distinct mechanism to what we found previously with parasite-induced reactivation after latency establishment. We determined that H. polygyrus infection increased both acute and latent MHV68 infection in a population of tissue resident macrophages, called large peritoneal macrophages. We demonstrate that this population of macrophages and vitamin A are required for increased acute and latent infection during parasite coinfection.


Assuntos
Coinfecção , Gammaherpesvirinae , Helmintos , Infecções por Herpesviridae , Infecção Latente , Doenças Parasitárias , Humanos , Animais , Camundongos , Ativação Viral , Latência Viral/fisiologia , Vitamina A , Linfócitos B , Infecções por Herpesviridae/complicações , Gammaherpesvirinae/fisiologia , Macrófagos , Camundongos Endogâmicos C57BL
3.
Front Cell Infect Microbiol ; 13: 1146381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065193

RESUMO

Immediately after entry into host cells, viruses are sensed by the innate immune system, leading to the activation of innate antiviral effector mechanisms including the type I interferon (IFN) response and natural killer (NK) cells. This innate immune response helps to shape an effective adaptive T cell immune response mediated by cytotoxic T cells and CD4+ T helper cells and is also critical for the maintenance of protective T cells during chronic infection. The human gammaherpesvirus Epstein-Barr virus (EBV) is a highly prevalent lymphotropic oncovirus that establishes chronic lifelong infections in the vast majority of the adult population. Although acute EBV infection is controlled in an immunocompetent host, chronic EBV infection can lead to severe complications in immunosuppressed patients. Given that EBV is strictly host-specific, its murine homolog murid herpesvirus 4 or MHV68 is a widely used model to obtain in vivo insights into the interaction between gammaherpesviruses and their host. Despite the fact that EBV and MHV68 have developed strategies to evade the innate and adaptive immune response, innate antiviral effector mechanisms still play a vital role in not only controlling the acute infection but also shaping an efficient long-lasting adaptive immune response. Here, we summarize the current knowledge about the innate immune response mediated by the type I IFN system and NK cells, and the adaptive T cell-mediated response during EBV and MHV68 infection. Investigating the fine-tuned interplay between the innate immune and T cell response will provide valuable insights which may be exploited to design better therapeutic strategies to vanquish chronic herpesviral infection.


Assuntos
Infecções por Vírus Epstein-Barr , Gammaherpesvirinae , Humanos , Animais , Camundongos , Herpesvirus Humano 4 , Infecção Persistente , Gammaherpesvirinae/fisiologia , Imunidade , Fatores de Restrição Antivirais
4.
Proc Natl Acad Sci U S A ; 119(32): e2123362119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921433

RESUMO

The germinal center (GC) plays a central role in the generation of antigen-specific B cells and antibodies. Tight regulation of the GC is essential due to the inherent risks of tumorigenesis and autoimmunity posed by inappropriate GC B cell processes. Gammaherpesviruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) utilize numerous armaments to drive infected naïve B cells, independent of antigen, through GC reactions to expand the latently infected B cell population and establish a stable latency reservoir. We previously demonstrated that the MHV68 microRNA (miRNA) mghv-miR-M1-7-5p represses host EWSR1 (Ewing sarcoma breakpoint region 1) to promote B cell infection. EWSR1 is a transcription and splicing regulator that is recognized for its involvement as a fusion protein in Ewing sarcoma. A function for EWSR1 in B cell responses has not been previously reported. Here, we demonstrate that 1) B cell-specific deletion of EWSR1 had no effect on generation of mature B cell subsets or basal immunoglobulin levels in naïve mice, 2) repression or ablation of EWSR1 in B cells promoted expansion of MHV68 latently infected GC B cells, and 3) B cell-specific deletion of EWSR1 during a normal immune response to nonviral antigen resulted in significantly elevated numbers of antigen-specific GC B cells, plasma cells, and circulating antibodies. Notably, EWSR1 deficiency did not affect the proliferation or survival of GC B cells but instead resulted in the generation of increased numbers of precursor GC B cells. Cumulatively, these findings demonstrate that EWSR1 is a negative regulator of B cell responses.


Assuntos
Linfócitos B , Gammaherpesvirinae , Centro Germinativo , Infecções por Herpesviridae , MicroRNAs , Proteína EWS de Ligação a RNA , Infecções Tumorais por Vírus , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Gammaherpesvirinae/genética , Gammaherpesvirinae/fisiologia , Deleção de Genes , Centro Germinativo/imunologia , Centro Germinativo/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/virologia , Latência Viral
5.
J Virol ; 96(12): e0069022, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35647668

RESUMO

Gammaherpesviruses (GHVs) are lymphotropic tumor viruses with a biphasic infectious cycle. Lytic replication at the primary site of infection is necessary for GHVs to spread throughout the host and establish latency in distal sites. Dissemination is mediated by infected B cells that traffic hematogenously from draining lymph nodes to peripheral lymphoid organs, such as the spleen. B cells serve as the major reservoir for viral latency, and it is hypothesized that periodic reactivation from latently infected B cells contributes to maintaining long-term chronic infection. While fundamentally important to an understanding of GHV biology, aspects of B cell infection in latency establishment and maintenance are incompletely defined, especially roles for lytic replication and reactivation in this cell type. To address this knowledge gap and overcome limitations of replication-defective viruses, we generated a recombinant murine gammaherpesvirus 68 (MHV68) in which ORF50, the gene that encodes the essential immediate-early replication and transcription activator protein (RTA), was flanked by loxP sites to enable conditional ablation of lytic replication by ORF50 deletion in cells that express Cre recombinase. Following infection of mice that encode Cre in B cells with this virus, splenomegaly and viral reactivation from splenocytes were significantly reduced; however, the number of latently infected splenocytes was equivalent to WT MHV68. Despite ORF50 deletion, MHV68 latency was maintained over time in spleens of mice at levels approximating WT, reactivation-competent MHV68. Treatment of infected mice with lipopolysaccharide (LPS), which promotes B cell activation and MHV68 reactivation ex vivo, yielded equivalent increases in the number of latently infected cells for both ORF50-deleted and WT MHV68, even when mice were simultaneously treated with the antiviral drug cidofovir to prevent reactivation. Together, these data demonstrate that productive viral replication in B cells is not required for MHV68 latency establishment and support the hypothesis that B cell proliferation facilitates latency maintenance in vivo in the absence of reactivation. IMPORTANCE Gammaherpesviruses establish lifelong chronic infections in cells of the immune system and place infected hosts at risk for developing lymphomas and other diseases. It is hypothesized that gammaherpesviruses must initiate acute infection in these cells to establish and maintain long-term infection, but this has not been directly tested. We report here the use of a viral genetic system that allows for cell-type-specific deletion of a viral gene that is essential for replication and reactivation. We employ this system in an in vivo model to reveal that viral replication is not required to initiate or maintain infection within B cells.


Assuntos
Linfócitos B , Infecções por Herpesviridae , Proteínas Imediatamente Precoces , Ativação Viral , Animais , Linfócitos B/virologia , Gammaherpesvirinae/genética , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/virologia , Proteínas Imediatamente Precoces/genética , Camundongos , Camundongos Endogâmicos C57BL , Latência Viral , Replicação Viral
6.
PLoS Pathog ; 17(11): e1010019, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780571

RESUMO

Gammaherpesviruses establish life-long infections within their host and have been shown to be the causative agents of devastating malignancies. Chronic infection within the host is mediated through cycles of transcriptionally quiescent stages of latency with periods of reactivation into detectable lytic and productive infection. The mechanisms that regulate reactivation from latency remain poorly understood. Previously, we defined a critical role for the viral cyclin in promoting reactivation from latency. Disruption of the viral cyclin had no impact on the frequency of cells containing viral genome during latency, yet it remains unclear whether the viral cyclin influences latently infected cells in a qualitative manner. To define the impact of the viral cyclin on properties of latent infection, we utilized a viral cyclin deficient variant expressing a LANA-beta-lactamase fusion protein (LANA::ßla), to enumerate both the cellular distribution and frequency of LANA gene expression. Disruption of the viral cyclin did not affect the cellular distribution of latently infected cells, but did result in a significant decrease in the frequency of cells that expressed LANA::ßla across multiple tissues and in both immunocompetent and immunodeficient hosts. Strikingly, whereas the cyclin-deficient virus had a reactivation defect in bulk culture, sort purified cyclin-deficient LANA::ßla expressing cells were fully capable of reactivation. These data emphasize that the γHV68 latent reservoir is comprised of at least two distinct stages of infection characterized by differential LANA expression, and that a primary function of the viral cyclin is to promote LANA expression during latency, a state associated with ex vivo reactivation competence.


Assuntos
Antígenos Virais/metabolismo , Ciclinas/metabolismo , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Virais/metabolismo , Ativação Viral , Replicação Viral , Animais , Antígenos Virais/genética , Ciclinas/genética , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/virologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Infecção Persistente , Proteínas Virais/genética , Latência Viral
7.
Viruses ; 13(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578268

RESUMO

Equid Gamma herpesvirus (eGHV) infections have been reported worldwide and may be correlated with clinical signs, e.g., affecting the respiratory tract in young horses. eGHV are shed by healthy horses as well as horses with respiratory tract disease. The prevalence in healthy Swiss horses is unknown to date but this data would provide valuable information for causal diagnosis in clinical cases and formulation of biosecurity recommendations. Nasal swabs from 68 healthy horses from 12 Swiss stables and 2 stables near the Swiss border region in Germany were analyzed by panherpes nested PCR. Positive samples were sequenced. A multivariable model was used to determine if sex, age, breed, canton, or stable had a significant effect on the shedding status of each detected eGHV. Overall, the eGHV prevalence was 59% (n = 68); the prevalence for equid herpesvirus-2 (EHV-2), equid herpesvirus-5 (EHV-5) and asinine herpesvirus-5 (AHV-5) was 38%, 12% and 9%, respectively. Co-infections with multiple eGHVs were observed in 25% of the positive samples. The odds of shedding EHV-2 decreased with age (p = 0.01) whereas the odds of shedding AHV-5 increased with age (p = 0.04). Breed, sex, canton, or stable had no significant association with eGHV shedding. As EHV-2 shedding was common in healthy horses a positive PCR result must be interpreted with caution regarding the formulation of biosecurity recommendations and causal diagnosis. As EHV-5 and AHV-5 shedding was less common than EHV-2, a positive test result is more likely to be of clinical relevance. Shedding of multiple eGHV complicates the interpretation of positive test results in a horse.


Assuntos
Herpesvirus Equídeo 1/isolamento & purificação , Nariz/virologia , Doenças Respiratórias/veterinária , Eliminação de Partículas Virais , Animais , Anticorpos Antivirais/sangue , DNA Viral/genética , Feminino , Gammaherpesvirinae/isolamento & purificação , Gammaherpesvirinae/fisiologia , Alemanha/epidemiologia , Herpesvirus Equídeo 1/classificação , Herpesvirus Equídeo 1/genética , Herpesvirus Equídeo 1/fisiologia , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/virologia , Cavalos , Masculino , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/virologia , Suíça/epidemiologia , Viremia
8.
Viruses ; 13(9)2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34578438

RESUMO

An evolutionary arms race occurs between viruses and hosts. Hosts have developed an array of antiviral mechanisms aimed at inhibiting replication and spread of viruses, reducing their fitness, and ultimately minimising pathogenic effects. In turn, viruses have evolved sophisticated counter-measures that mediate evasion of host defence mechanisms. A key aspect of host defences is the ability to differentiate between self and non-self. Previous studies have demonstrated significant suppression of CpG and UpA dinucleotide frequencies in the coding regions of RNA and small DNA viruses. Artificially increasing these dinucleotide frequencies results in a substantial attenuation of virus replication, suggesting dinucleotide bias could facilitate recognition of non-self RNA. The interferon-inducible gene, zinc finger antiviral protein (ZAP) is the host factor responsible for sensing CpG dinucleotides in viral RNA and restricting RNA viruses through direct binding and degradation of the target RNA. Herpesviruses are large DNA viruses that comprise three subfamilies, alpha, beta and gamma, which display divergent CpG dinucleotide patterns within their genomes. ZAP has recently been shown to act as a host restriction factor against human cytomegalovirus (HCMV), a beta-herpesvirus, which in turn evades ZAP detection by suppressing CpG levels in the major immediate-early transcript IE1, one of the first genes expressed by the virus. While suppression of CpG dinucleotides allows evasion of ZAP targeting, synonymous changes in nucleotide composition that cause genome biases, such as low GC content, can cause inefficient gene expression, especially in unspliced transcripts. To maintain compact genomes, the majority of herpesvirus transcripts are unspliced. Here we discuss how the conflicting pressures of ZAP evasion, the need to maintain compact genomes through the use of unspliced transcripts and maintaining efficient gene expression may have shaped the evolution of herpesvirus genomes, leading to characteristic CpG dinucleotide patterns.


Assuntos
Alphaherpesvirinae/genética , Fosfatos de Dinucleosídeos/metabolismo , Genoma Viral , Herpesviridae/genética , Proteínas de Ligação a RNA/metabolismo , Alphaherpesvirinae/metabolismo , Alphaherpesvirinae/fisiologia , Animais , Betaherpesvirinae/genética , Betaherpesvirinae/metabolismo , Betaherpesvirinae/fisiologia , Evolução Molecular , Gammaherpesvirinae/genética , Gammaherpesvirinae/metabolismo , Gammaherpesvirinae/fisiologia , Expressão Gênica , Herpesviridae/metabolismo , Herpesviridae/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Splicing de RNA , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/química , Transdução de Sinais , Proteínas Virais/metabolismo
9.
Viruses ; 13(6)2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199939

RESUMO

Porcine lymphotropic herpesviruses -1, -2 and -3 (PLHV-1, PLHV-2 and PLHV-3) are gammaherpesviruses which are widespread in pigs. They are closely related to the Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus, both of which cause severe diseases in humans. PLHVs are also related to bovine and ovine gammaherpesviruses, which are apathogenic in the natural host, but cause severe diseases after transmission into other species. Until now, no association between PLHVs and any pig diseases had been described. However, PLHV-1 causes a post-transplantation lymphoproliferative disorder (PTLD) after experimental transplantations in minipigs. This disorder is similar to human PTLD, a serious complication of solid human organ transplantation linked to EBV. Xenotransplantation using pig cells, tissues and organs is under development in order to alleviate the shortage of human transplants. Meanwhile, remarkable survival times of pig xenotransplants in non-human primates have been achieved. In these preclinical trials, another pig herpesvirus, the porcine cytomegalovirus (PCMV), a roseolovirus, was shown to significantly reduce the survival time of pig xenotransplants in baboons and other non-human primates. Although PLHV-1 was found in genetically modified donor pigs used in preclinical xenotransplantation, it was, in contrast to PCMV, not transmitted to the recipient. Nevertheless, it seems important to use PLHV-free donor pigs in order to achieve safe xenotransplantation.


Assuntos
Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/veterinária , Doenças dos Suínos/virologia , Transplante Heterólogo , Animais , Ensaios Clínicos como Assunto , Citomegalovirus , Infecções por Citomegalovirus , Gerenciamento Clínico , Humanos , Modelos Animais , Prevalência , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Transplante Heterólogo/efeitos adversos , Transplante Heterólogo/métodos , Transplante Heterólogo/normas
10.
J Virol ; 95(17): e0064921, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34105999

RESUMO

Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in >95% of adults worldwide and are associated with several cancers. We have shown that endogenous cholesterol synthesis supports gammaherpesvirus replication. However, the role of exogenous cholesterol exchange and signaling during infection remains poorly understood. Extracellular cholesterol is carried in the serum by several lipoproteins, including low-density lipoproteins (LDL). The LDL receptor (LDL-R) mediates the endocytosis of these cholesterol-rich LDL particles into the cell, thereby supplying the cell with cholesterol. We found that LDL-R expression attenuates gammaherpesvirus replication during the early stages of the replication cycle, as evident by increased viral gene expression in LDL-R-/- primary macrophages. This was not observed in primary fibroblasts, indicating that the antiviral effects of LDL-R are cell type specific. Increased viral gene expression in LDL-R-/- primary macrophages was due to increased activity of the endogenous cholesterol synthesis pathway. Intriguingly, despite type I interferon-driven increase in LDL-R mRNA levels in infected macrophages, protein levels of LDL-R continually decreased over the single cycle of viral replication. Thus, our study has uncovered an intriguing tug of war between the LDL-R-driven antiviral effect on cholesterol metabolism and the viral targeting of the LDL-R protein. IMPORTANCE LDL-R is a cell surface receptor that mediates the endocytosis of cholesterol-rich low-density lipoproteins, allowing cells to acquire cholesterol exogenously. Several RNA viruses usurp LDL-R function to facilitate replication; however, the role of LDL-R in DNA virus infection remains unknown. Gammaherpesviruses are double-stranded DNA viruses that are associated with several cancers. Here, we show that LDL-R attenuates gammaherpesvirus replication in primary macrophages by decreasing endogenous cholesterol synthesis activity, a pathway known to support gammaherpesvirus replication. In response, LDL-R protein levels are decreased in infected cells to mitigate the antiviral effects, revealing an intriguing tug of war between the virus and the host.


Assuntos
Colesterol/biossíntese , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/prevenção & controle , Lipogênese , Macrófagos/metabolismo , Receptores de LDL/metabolismo , Replicação Viral , Animais , Feminino , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/genética , Transdução de Sinais
11.
J Virol ; 95(14): e0007921, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33910955

RESUMO

RNA polymerase III (pol III) transcribes multiple noncoding RNAs (ncRNAs) that are essential for cellular function. Pol III-dependent transcription is also engaged during certain viral infections, including those of the gammaherpesviruses (γHVs), where pol III-dependent viral ncRNAs promote pathogenesis. Additionally, several host ncRNAs are upregulated during γHV infection and play integral roles in pathogenesis by facilitating viral establishment and gene expression. Here, we sought to investigate how pol III promoters and transcripts are regulated during gammaherpesvirus infection using the murine gammaherpesvirus 68 (γHV68) system. To compare the transcription of host and viral pol III-dependent ncRNAs, we analyzed a series of pol III promoters for host and viral ncRNAs using a luciferase reporter optimized to measure pol III activity. We measured promoter activity from the reporter gene at the translation level via luciferase activity and at the transcription level via reverse transcription-quantitative PCR (RT-qPCR). We further measured endogenous ncRNA expression at single-cell resolution by flow cytometry. These studies demonstrated that lytic infection with γHV68 increased the transcription from multiple host and viral pol III promoters and further identified the ability of accessory sequences to influence both baseline and inducible promoter activity after infection. RNA flow cytometry revealed the induction of endogenous pol III-derived ncRNAs that tightly correlated with viral gene expression. These studies highlight how lytic gammaherpesvirus infection alters the transcriptional landscape of host cells to increase pol III-derived RNAs, a process that may further modify cellular function and enhance viral gene expression and pathogenesis. IMPORTANCE Gammaherpesviruses are a prime example of how viruses can alter the host transcriptional landscape to establish infection. Despite major insights into how these viruses modify RNA polymerase II-dependent generation of messenger RNAs, how these viruses influence the activity of host RNA polymerase III remains much less clear. Small noncoding RNAs produced by RNA polymerase III are increasingly recognized to play critical regulatory roles in cell biology and virus infection. Studies of RNA polymerase III-dependent transcription are complicated by multiple promoter types and diverse RNAs with variable stability and processing requirements. Here, we characterized a reporter system to directly study RNA polymerase III-dependent responses during gammaherpesvirus infection and utilized single-cell flow cytometry-based methods to reveal that gammaherpesvirus lytic replication broadly induces pol III activity to enhance host and viral noncoding RNA expression within the infected cell.


Assuntos
Gammaherpesvirinae/fisiologia , Regulação Viral da Expressão Gênica , Regiões Promotoras Genéticas , RNA Polimerase III/genética , Latência Viral , Gammaherpesvirinae/genética , Células HEK293 , Humanos , Luciferases/genética , Reação em Cadeia da Polimerase , RNA não Traduzido/metabolismo , Transfecção , Proteínas Virais/genética
12.
Transbound Emerg Dis ; 68(2): 552-564, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32619314

RESUMO

The European mink (Mustela lutreola) is a riparian mustelid, considered one of the most endangered carnivores in the world. Alpha, beta and gammaherpesviruses described in mustelids have been occasionally associated with different pathological processes. However, there is no information about the herpesviruses species infecting European minks. In this study, 141 samples of swabs (oral, conjunctival, anal), faeces and tissues from 23 animals were analysed for herpesvirus (HV) using a pan-HV-PCR assay. Two different, potentially novel, gammaherpesvirus species were identified in 12 samples from four animals (17.3%), and tentatively named Mustelid gammaherpesvirus-2 (MUGHV-2) and MuGHV-3. Gross examination was performed on dead minks (n = 11), while histopathology was performed using available samples from HV-positive individuals (n = 2), identifying several neoplasms, including B-cell lymphoma (identified by immunohistochemistry) with intralesional syncytia and intranuclear inclusion bodies characteristic of HV (n = 1), pulmonary adenocarcinoma (n = 1), and biliary (n = 1) and preputial (n = 1) cystadenomas, as well as other lesions (e.g., axonal vacuolar degeneration [n = 2] and neuritis [n = 1]). Viral particles, consistent with HVs, were observed by electron microscopy in the mink with neural lymphoma and inclusion bodies. This is the first description of neoplasms and concurrent gammaherpesvirus infection in European minks. The pathological, ultrastructural and PCR findings (MuGHV-2) in the European mink with lymphoma strongly suggest a potential role for this novel gammaherpesvirus in its pathogenesis, as it has been reported in other HV-infected species with lymphoma. The occurrence of neural lymphoma with intralesional syncytia and herpesviral inclusions is, however, unique among mammals. Further research is warranted to elucidate the potential oncogenic properties of gammaherpesviruses in European mink and their epidemiology in the wild population.


Assuntos
Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/veterinária , Vison , Neoplasias/veterinária , Animais , Animais de Zoológico , Espécies em Perigo de Extinção , Infecções por Herpesviridae/virologia , Neoplasias/etiologia
13.
mBio ; 11(6)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323507

RESUMO

Transfer RNAs (tRNAs) are transcribed by RNA polymerase III (RNAPIII) and play a central role in decoding our genome, yet their expression and noncanonical function remain understudied. Many DNA tumor viruses enhance the activity of RNAPIII, yet whether infection alters tRNA expression is largely unknown. Here, we present the first genome-wide analysis of how viral infection alters the tRNAome. Using a tRNA-specific sequencing method (DM-tRNA-seq), we find that the murine gammaherpesvirus MHV68 induces global changes in premature tRNA (pre-tRNA) expression, with 14% of tRNA genes upregulated more than 3-fold, indicating that differential tRNA gene induction is a characteristic of DNA virus infection. Elevated pre-tRNA expression corresponds to increased RNAPIII occupancy for the subset of tRNA genes tested; additionally, posttranscriptional mechanisms contribute to the accumulation of pre-tRNA species. We find increased abundance of tRNA fragments derived from pre-tRNAs upregulated by viral infection, suggesting that noncanonical tRNA cleavage is also affected. Furthermore, pre-tRNA accumulation, but not RNAPIII recruitment, requires gammaherpesvirus-induced degradation of host mRNAs by the virally encoded mRNA endonuclease muSOX. We hypothesize that depletion of pre-tRNA maturation or turnover machinery contributes to robust accumulation of full-length pre-tRNAs in infected cells. Collectively, these findings reveal pervasive changes to tRNA expression during DNA virus infection and highlight the potential of using viruses to explore tRNA biology.IMPORTANCE Viral infection can dramatically change the gene expression landscape of the host cell, yet little is known regarding changes in noncoding gene transcription by RNA polymerase III (RNAPIII). Among these are transfer RNAs (tRNAs), which are fundamental in protein translation, yet whose gene regulatory features remain largely undefined in mammalian cells. Here, we perform the first genome-wide analysis of tRNA expression changes during viral infection. We show that premature tRNAs accumulate during infection with the model gammaherpesvirus MHV68 as a consequence of increased transcription, but that transcripts do not undergo canonical maturation into mature tRNAs. These findings underscore how tRNA expression is a highly regulated process, especially during conditions of elevated RNAPIII activity.


Assuntos
Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Animais , Linhagem Celular , Gammaherpesvirinae/genética , Infecções por Herpesviridae/virologia , Humanos , Camundongos , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , Transcrição Gênica
14.
Viruses ; 12(9)2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867109

RESUMO

To determine Phascolarctid gammaherpesviruses (PhaHV) infection in South Australian koala populations, 80 oropharyngeal swabs from wild-caught and 87 oropharyngeal spleen samples and swabs from euthanased koalas were tested using two specific PCR assays developed to detect PhaHV-1 and PhaHV-2. In wild-caught koalas, active shedding of PhaHV was determined by positive oropharyngeal samples in 72.5% (58/80) of animals, of which 44.8% (26/58) had PhaHV-1, 20.7% (12/58) PhaHV-2 and 34.5% (20/58) both viral subtypes. In the euthanased koalas, systemic infection was determined by positive PCR in spleen samples and found in 72.4% (63/87) of koalas. Active shedding was determined by positive oropharyngeal results and found in 54.0% (47/87) of koalas. Koalas infected and actively shedding PhaHV-1 alone, PhaHV-2 alone or shedding both viral subtypes were 48.9% (23/47), 14.9% (7/47) and 36.2% (17/47), respectively. Only 45.9% (40/87) were not actively shedding, of which 40.0% (16/40) of these had systemic infections. Both wild-caught and euthanased koalas actively shedding PhaHV-2 were significantly more likely to be actively shedding both viral subtypes. Active shedding of PhaHV-2 had a significant negative correlation with BCS in the euthanased cohort, and active shedding of PhaHV-1 had a significant positive relationship with age in both wild-caught and euthanased cohorts.


Assuntos
Gammaherpesvirinae/isolamento & purificação , Infecções por Herpesviridae/veterinária , Phascolarctidae/virologia , Animais , Animais Selvagens/virologia , Coinfecção , Feminino , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Masculino , Orofaringe/virologia , Prevalência , Austrália do Sul/epidemiologia , Baço/virologia , Eliminação de Partículas Virais
15.
Braz J Microbiol ; 51(3): 1405-1432, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32542424

RESUMO

Sheep-associated malignant catarrhal fever (SA-MCF), the form of MCF that occurs in Brazil, is a severe, frequently fatal, infectious disease caused by ovine gammaherpesvirus-2 (OvHV-2), in which sheep are the asymptomatic hosts and cattle and other cloven-hoofed animals are the accidental hosts. This review provides a critical analysis of the historical, epidemiological aspects and the estimated economic impacts associated with SA-MCF in Brazil. Moreover, the clinical manifestations and pathological lesions associated with SA-MCF in cattle are reviewed and discussed and the phylogenetic distribution of OvHV-2 in Brazil is presented. OvHV-2 is the only MCF virus identified in animals from Brazil. It is recommended that a histopathologic diagnosis of SA-MCF be based on all aspects of vascular disease in the affected animal and not only lymphocytic/necrotizing vasculitis and/or fibrinoid change. Conformation of the intralesional participation of OvHV-2 in these alterations can be achieved by immunohistochemistry and/or in situ hybridization assays. Additionally, it is proposed that OvHV-2 should be considered as a possible infectious disease agent associated with the development of bovine respiratory disease in cattle. Furthermore, the possible role of the small intestine in the dissemination of OvHV-2 is discussed.


Assuntos
Gammaherpesvirinae/isolamento & purificação , Febre Catarral Maligna/virologia , Doenças dos Ovinos/virologia , Animais , Brasil/epidemiologia , Gammaherpesvirinae/classificação , Gammaherpesvirinae/genética , Gammaherpesvirinae/fisiologia , Febre Catarral Maligna/epidemiologia , Febre Catarral Maligna/patologia , Filogenia , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/patologia
16.
PLoS Pathog ; 16(4): e1008438, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32353066

RESUMO

One of the defining characteristics of the B cell receptor (BCR) is the extensive diversity in the repertoire of immunoglobulin genes that make up the BCR, resulting in broad range of specificity. Gammaherpesviruses are B lymphotropic viruses that establish life-long infection in B cells, and although the B cell receptor plays a central role in B cell biology, very little is known about the immunoglobulin repertoire of gammaherpesvirus infected cells. To begin to characterize the Ig genes expressed by murine gammaherpesvirus 68 (MHV68) infected cells, we utilized single cell sorting to sequence and clone the Ig variable regions of infected germinal center (GC) B cells and plasma cells. We show that MHV68 infection is biased towards cells that express the Igλ light chain along with a single heavy chain variable gene, IGHV10-1*01. This population arises through clonal expansion but is not viral antigen specific. Furthermore, we show that class-switching in MHV68 infected cells differs from that of uninfected cells. Fewer infected GC B cells are class-switched compared to uninfected GC B cells, while more infected plasma cells are class-switched compared to uninfected plasma cells. Additionally, although they are germinal center derived, the majority of class switched plasma cells display no somatic hypermutation regardless of infection status. Taken together, these data indicate that selection of infected B cells with a specific BCR, as well as virus mediated manipulation of class switching and somatic hypermutation, are critical aspects in establishing life-long gammaherpesvirus infection.


Assuntos
Linfócitos B/imunologia , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/veterinária , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/imunologia , Cadeias lambda de Imunoglobulina/imunologia , Doenças dos Roedores/imunologia , Animais , Linfócitos B/virologia , Feminino , Gammaherpesvirinae/genética , Centro Germinativo/imunologia , Centro Germinativo/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Plasmócitos/imunologia , Plasmócitos/virologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Doenças dos Roedores/genética , Doenças dos Roedores/virologia
17.
J Reprod Immunol ; 140: 103126, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32289593

RESUMO

The maternal-fetal interface possesses innate immune strategies to protect against infections. We previously reported that prior viral infection of human fetal membranes (FMs) in vitro and mouse FMs in vivo sensitized the tissue to low dose bacterial LPS leading to augmented inflammation. The objective of this study was to examine FM production of type I interferons (IFNs) and IFN-stimulated genes (ISGs) in the context of this polymicrobial model. Human FM explants and pregnant C57BL/6 mice were treated with or without low dose LPS following exposure to media or the γ-herpes virus, MHV-68. FM RNA was analyzed by qRT-PCR for type I IFNs, ISGs, upstream signaling, and MHV-68 open reading frames (ORFs). Pre-exposure to MHV-68 followed by LPS treatment inhibited the ability of LPS to induce human FM type I IFNs (IFNA, IFNB); ISGs (OAS, MxA, APOBEC3G) and upstream signaling mediators (RIG-I, TBK-1). Signaling mediators IRF-3 and IRF-7 were also reduced. In mouse FMs, pre-exposure to MHV-68 followed by LPS treatment reduced the ability of LPS to upregulate Ifna, Ifnb, Mxa, Irf7, and also reduced Irf3. MHV-68 infection of FMs induced ORF45 which targets IRF-7, and this was further augmented in response to a combination of MHV-68 and LPS. Together, these findings indicate that a viral infection blunts FM type I IFN production and signaling in response to LPS leading to a suppressed ISG response. Our studies suggest that a viral infection inhibits this protective FM response by negatively regulating IRF-7 through ORF45, leaving the maternal-fetal interface vulnerable to further viral attack.


Assuntos
Membranas Extraembrionárias/metabolismo , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/imunologia , Interferon Tipo I/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Proteínas Imediatamente Precoces/genética , Tolerância Imunológica , Inflamação , Fator Regulador 3 de Interferon/genética , Fator Regulador 7 de Interferon/genética , Interferon Tipo I/genética , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
18.
Schweiz Arch Tierheilkd ; 162(4): 245-256, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32234694

RESUMO

INTRODUCTION: This case series describes three cases of equine multinodular pulmonary fibrosis (EMPF) diagnosed at the Clinic for Equine Internal Medicine at the University of Zurich between 2012 and 2017. Current information on etiology and treatment options are presented. Two horses showed mild signs of chronic lower respiratory tract disease and one horse was presented with acute signs of disease including recurrent fever spikes and tachypnea. Diagnosis was achieved by physical examination, radiographic findings, and PCR testing for equine herpesviruses (EHV) of bronchoalveolar lavage (BAL) fluid or lung tissue obtained by biopsy. All horses were euthanized due to continuing deterioration after attempted treatment. Post mortem histological examination of lung tissue showed severe multifocal diffuse to confluent fibrosis in two cases and in another horse a discrete nodular fibrosis pattern. Panherpes nested PCR revealed the presence of equine herpesvirus 5 (EHV-5) DNA in lung tissue of one horse whereas in two other horses, asinine herpes virus 5 (AHV-5) was detected. EMPF should be considered as a differential diagnosis in horses with acute and chronic respiratory disease, including horses non-responsive to treatment for equine asthma.


INTRODUCTION: Cette série de cas décrit trois cas de fibrose pulmonaire multinodulaire équine (EMPF) diagnostiqués à la Clinique de médecine interne équine de l'Université de Zurich entre 2012 et 2017. Des informations actuelles sur l'étiologie et les options de traitement sont présentées. Deux chevaux présentaient de légers signes de maladie chronique des voies respiratoires inférieures et un cheval présentait des signes aigus de maladie, notamment des pics de fièvre récurrents et une tachypnée. Le diagnostic a été obtenu grâce à un examen physique, des résultats radiographiques et des tests PCR pour les virus herpès équins (EHV) du liquide de lavage broncho-alvéolaire (BAL) ou du tissu pulmonaire obtenus par biopsie. Tous les chevaux ont été euthanasiés en raison d'une détérioration continue après une tentative de traitement. L'examen histologique post mortem du tissu pulmonaire a montré une fibrose multifocale diffuse à confluente sévère dans deux cas et chez un cheval un type de fibrose nodulaire discret. La PCR par Panherpes a révélé la présence d'ADN de virus herpès équin 5 (EHV-5) dans le tissu pulmonaire d>un cheval alors que chez deux autres chevaux, le virus de l>herpès asinien 5 (AHV-5) a été détecté. L'EMPF doit être considéré comme un diagnostic différentiel chez les chevaux souffrant d'une maladie respiratoire aiguë et chronique, y compris les chevaux ne répondant pas au traitement de l'asthme équin.


Assuntos
Gammaherpesvirinae/fisiologia , Doenças dos Cavalos/virologia , Fibrose Pulmonar/veterinária , Animais , Eutanásia Animal , Gammaherpesvirinae/genética , Doenças dos Cavalos/diagnóstico por imagem , Doenças dos Cavalos/patologia , Cavalos , Reação em Cadeia da Polimerase , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/patologia , Fibrose Pulmonar/virologia
19.
PLoS Pathog ; 15(8): e1007843, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31393953

RESUMO

Gammaherpesviruses, including the human pathogens Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), establish lifelong latent infection in B cells and are associated with a variety of tumors. In addition to protein coding genes, these viruses encode numerous microRNAs (miRNAs) within their genomes. While putative host targets of EBV and KSHV miRNAs have been previously identified, the specific functions of these miRNAs during in vivo infection are largely unknown. Murine gammaherpesvirus 68 (MHV68) is a natural pathogen of rodents that is genetically related to both EBV and KSHV, and thus serves as an excellent model for the study of EBV and KSHV genetic elements such as miRNAs in the context of infection and disease. However, the specific targets of MHV68 miRNAs remain completely unknown. Using a technique known as qCLASH (quick crosslinking, ligation, and sequencing of hybrids), we have now identified thousands of Ago-associated, direct miRNA-mRNA interactions during lytic infection, latent infection and reactivation from latency. Validating this approach, detailed molecular analyses of specific interactions demonstrated repression of numerous host mRNA targets of MHV68 miRNAs, including Arid1a, Ctsl, Ifitm3 and Phc3. Notably, of the 1,505 MHV68 miRNA-host mRNA targets identified in B cells, 86% were shared with either EBV or KSHV, and 64% were shared among all three viruses, demonstrating significant conservation of gammaherpesvirus miRNA targeting. Pathway analysis of MHV68 miRNA targets further revealed enrichment of cellular pathways involved in protein synthesis and protein modification, including eIF2 Signaling, mTOR signaling and protein ubiquitination, pathways also enriched for targets of EBV and KSHV miRNAs. These findings provide substantial new information about specific targets of MHV68 miRNAs and shed important light on likely conserved functions of gammaherpesvirus miRNAs.


Assuntos
Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/metabolismo , MicroRNAs/genética , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Animais , Regulação da Expressão Gênica , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Camundongos , RNA Mensageiro/genética , RNA Viral/genética , RNA Viral/metabolismo , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética , Replicação Viral
20.
PLoS Pathog ; 15(6): e1007849, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31166996

RESUMO

Virus-host interactions are frequently studied in bulk cell populations, obscuring cell-to-cell variation. Here we investigate endogenous herpesvirus gene expression at the single-cell level, combining a sensitive and robust fluorescent in situ hybridization platform with multiparameter flow cytometry, to study the expression of gammaherpesvirus non-coding RNAs (ncRNAs) during lytic replication, latent infection and reactivation in vitro. This method allowed robust detection of viral ncRNAs of murine gammaherpesvirus 68 (γHV68), Kaposi's sarcoma associated herpesvirus and Epstein-Barr virus, revealing variable expression at the single-cell level. By quantifying the inter-relationship of viral ncRNA, viral mRNA, viral protein and host mRNA regulation during γHV68 infection, we find heterogeneous and asynchronous gene expression during latency and reactivation, with reactivation from latency identified by a distinct gene expression profile within rare cells. Further, during lytic replication with γHV68, we find many cells have limited viral gene expression, with only a fraction of cells showing robust gene expression, dynamic RNA localization, and progressive infection. Lytic viral gene expression was enhanced in primary fibroblasts and by conditions associated with enhanced viral replication, with multiple subpopulations of cells present in even highly permissive infection conditions. These findings, powered by single-cell analysis integrated with automated clustering algorithms, suggest inefficient or abortive γHV infection in many cells, and identify substantial heterogeneity in viral gene expression at the single-cell level.


Assuntos
Gammaherpesvirinae/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Infecções por Herpesviridae/metabolismo , RNA Mensageiro/biossíntese , RNA não Traduzido/biossíntese , RNA Viral/biossíntese , Replicação Viral/fisiologia , Animais , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Humanos , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA não Traduzido/genética , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...